
Introduction

OSA-CBM stands for Open System Architecture for Condition Based Maintenance.
This specification is offered by the MIMOSA organization. Information on this organization can be found at http://www.mimosa.org.

Usage of this specification may only be done under the MIMOSA licensing agreement. It is open to the public usage only in accordance with the
non-members' licensing right. It is open to MIMOSA members' usage in accordance with the members' licensing rights as held from 2002 and later.
THIS WORK PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, see applicable license for complete details.

OSA-CBM version 3.2 is compatible with the OSA-EAI version 3.2.
OSA-CBM conforms to ISO 13374, a Condition Based Maintenance standard.

OSA-CBM is based on the work supported by the Office of Naval Research under Agreement No N00014-99-3-0011 OSA-CBM Boeing DUST.
This version has been modified from the original OSA-CBM 1.0 DUST program specification within the MIMOSA organizational process.

OSA-CBM
Interface Specification

OSA-CBM
Information Specification

Main EntryPoint Interface Forms
1) Synchronous
2) Asynchronous
3) Data Service
4) DataEvent Server

Technology Specification

This specification is designed for multi-technological implementation.
From this point the UML needs specific mappings into programming languages, network protocols, and database storage (e.g. MIMOSA OSA-EAI CRIS).
This document provides the abstract UML description of the specification.

This architecture is divided into the information specification, which defines the information that can be moved around in a CBM system, and the
interface specification, which is used to move that information. This separates the information that is moved, stored, and processed from
the mechanism that accomplishes these tasks.

An implementation of this technology will select applicable interfaces and merge them with the information specification into a complete package.
Specific technological implementations may be vendor IP supplied tools and utilities. Such vendors are encouraged to become MIMOSA members.

Open Standard
Platform Independent
Interface Specification

Open Standard
Platform Independent
Information Specification

Proprietary
Vendors

page 1

Specific Implementation,
Tools, Utilities

Open Standard

UML description of the information
found within an OSA-CBM system

Mapping of Abstract UML
to Specific Technologies

Technologies

Languagues: C++, Java, C, ...
Communication: XML, DCOM, CORBA,

HTTP, SOAP, ...
Storage: Database, Binary file, ...

Vendor Specific Implementations
Languages - C++, Java, C#
Data Storage - Databases, Utilities

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Compliance

Notes on Compliance

page 2

The initial implementations for the OSA-CBM 3.2 technology mapping are an XML schema
for the information content and a WSDL document for the interface implementation.
Programs can be verified against the XML schema and WSDL document.

Other implementations will be added as they are developed.
New technology mappings will determine their means of compliance at the time of acceptance.

OSA-CBM UML Specification 3.2

Technology Specification

This document covers the OSA-CBM abstract UML specification.
It defines the core specification of the information found in a CBM system.
It also defines several interfaces that may be used to transport information.

A mapping effort is required to convert this specification into a
technology representation that is verifiable. For example, a mapping
of the UML Information Specification to XML will result in an XML schema
that specifically defines the XML form of the data. The XML schema wil
then be used to validate a system that is required to output OSA-CBM XML.

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Interfaces

There are several interface types to accomodate different purposes and technological capabilities.
A given implementation will likely not implement every interface.
Rather, the technology of choice will specify possible interfaces, and an implementation will
select appropriate interface(s) from that subset.

Example: A Web server returning XML over HTTP would likely use the synchronous interface.

page 3

Interface
An interface describes how information will be moved.
A request is made to get information from an object.
A notify is made to input information into an object

EntryPoint - the interface presented by an object to the outside world.
It provides direct access to the top level classes.
(For example, the DataEventSet and Configuration classes.)

EntryPointSink - Asychronous data return path for requested information.

Synchronous Interface - Information is returned by the Request method.
Asynchronous Interface - Information is returned as available via an EntryPointSink object.

Definitions

Interface Types 1) Synchronous
2) Asynchronous
3) Data Service
4) DataEvent Server

Interfaces

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Synchronous Interface

Synchronous Interface

The synchronous interface returns data with the call.
It models the Web XML over HTTP fetch methodology

Example (C++):
newData = moduleEPptr->requestDataEventSet(...);

SynchronousOsacbmModule

+epRequestDataEventSet(in mList : MonitorIdGroup) : DataEventSet
+epRequestConfig(in configRequest : ConfigRequest) : Configuration
+epRequestExplanationDataSet(in mList : MonitorIdGroup) : ExplanationDataSet
+epRequestExplanationDataRefSet(in mList : MonitorIdGroup) : ExplanationDataRefSet
+epRequestExplanationSrcs(in mList : MonitorIdGroup) : ExplanationSrcs
+epRequestExplanationSrcsStr(in mList : MonitorIdGroup) : ExplanationSrcsStr
+epNotifyControl(in controlChange : ControlChange)
+epRequestControl(in controlRequest : ControlRequest) : ControlInfo
+epNotifyApp(in appChange : AppChange)
+epRequestApp(in appRequest : AppRequest) : AppInfo
+epRequestErr(in errorRequest : ErrorRequest) : ErrorInfo

EntryPointSynchronous

page 4

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Asynchronous Interface

Asynchronous Connected Module Interface

The Asynchronous Interface allows any number of higher modules to
establish and maintain a two-way connection for duration of need.
The sinkId and epId are used for specific sink and entry point identification.
The two-way connection has two main advantages over synchronous calls:
1) It is typically faster in usage since the overhead of connection occurs only once.
2) It allows for three different modes of communication.

-- Return on request, which was the main OSA-CBM 1.0 style of communication.
-- Return on alert, such as when a threshold is exceeded. The connection can be set up for notification only on alert.
-- Push All, which pushes data to the higher connected module every time it collects data without the need for a request beforehand.

Example method call interplay with the connection oriented Asynchronous Interface (C++):
// A higher module requests data from lower module that it previously established a connection with
lpEp_lowerModuleWithData->requestDataEventSet(lpRequestingModuleEPSinkptr);

// The lower module returns data when it is ready
lpSink_higherModule->notifyDataEventSet(data);

AsynchronousOsacbmModule

+epRequestConnection(in epSink : EntryPointSinkAsync, in sinkId : int, in mList : MonitorIdGroupList)
+epRemoveConnection(in epId : int)
+epRequestStatus(in epId : int)
+epRequestDataEventSet(in epId : int, in mList : MonitorIdGroupList)
+epRequestConfig(in epId : int, in epIdWithInfo : int, in cq : ConfigRequest)
+epRequestExplanationDataSet(in epId : int, in mList : MonitorIdGroupList)
+epRequestExplanationDataRefSet(in epId : int, in mList : MonitorIdGroupList)
+epRequestExplanationSrcs(in epId : int, in mList : MonitorIdGroupList)
+epRequestExplanationSrcsStr(in epId : int, in mList : MonitorIdGroupList)
+epNotifyControl(in epId : int, in controlChange)
+epRequestControl(in epId : int, in epIdWithInfo : int, in controlRequest : ControlRequest)
+epNotifyApp(in epId : int, in appChange : AppChange)
+epRequestApp(in epId : int, in appRequest : AppRequest)
+epRequestErr(in epId : int, in errorRequest : ErrorRequest)

EntryPointAsync

AsynchronousRequestor

+sinkNotifyConnection(in sinkId : int, in epId : int)
+sinkNotifyStatus(in sinkId : int, in status : int, in complete : double)
+sinkNotifyDataEventSet(in sinkId : int, in dataSet : DataEventSet)
+sinkNotifyExplanationDataSet(in sinkId : int, in explDataSet : ExplanationDataSet, in mList : MonitorIdGroupList)
+sinkNotifyExplanationDataRefSet(in sinkId : int, in explDataRefSet : ExplanationDataRefSet, in mList : MonitorIdGroupList)
+sinkNotifyExplanationSrcs(in sinkId : int, in explSrcs : ExplanationSrcs, in mList : MonitorIdGroupList)
+sinkNotifyExplanationSrcsStr(in sinkId : int, in explSrcsStr : ExplanationSrcsStr, in mList : MonitorIdGroupList)
+sinkNotifyConfig(in sinkId : int, in requstedEpId : int, in config : Configuration)
+sinkNotifyControl(in sinkId : int, in requstedEpId : int, in control : ControlInfo)
+sinkNotifyApp(in sinkId : int, in appInfo : AppInfo)
+sinkNotifyError(in sinkId : int, in errorInfo : ErrorInfo)

EntryPointSinkAsync

*

page 5

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Data Service

page 6

EntryPointService is a one-way data input device.

An EntryPointService is a well-known location service of a well-known function.

Two possible uses would be:
1) data storage utility
2) maintenance advisory receiver service

+serviceNotifyDataEventSet(in dataSet) : EPSStatus
+serviceNotifyConfig(in config) : EPSStatus
+serviceNotifyExplanationDataRefSet(in explDataRefSet) : EPSStatus

EntryPointService

EPSStatus

+status : string
EPSStatus is a return indicator of
how an input message was received.

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Data Service

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

DataEvent Server

page 7

In many systems, signals are moved individually.
This page describes an interface mechanism for handling an individual
DataEvent in a simplified interface.

All classes marked with "_UserDefined" are abstract representations of some
class that is written with any desired class name with specifically desired
functionality for special handling of signals.

+addDataEventObserver(in deObserver : DataEventObserver)
+removeDataEventObserver(in deObserver : DataEventObserver)

EntryPoint_DataEventServer

+getSite() : Site
+getCode() : int
+notifyDataEvent(in dataEvent)

DataEventObserver

OSA-CBM UML Specification 3.2

+setNotifyOnAlertOnly()
+setNotifyAll()

DataEventObserver_StdFilter DataEventObserver_UserDefined

+notifyDataEvent(in notifyDataEvent)

EntryPoint_DataEventReciever

EntryPoint_DataEventReciever_UserDefined

Release � Sept. 12, 2008

EntryPoint_DataEventServer_UserDefined

DataEvent Server

A module that provides DataEvents will inherit from
the EntryPoint_DataEventServer.

A module that is to recieve DataEvents will inherit
from EntryPoint_DataEventReciever.

The DataEventObserver will contain a reference to
the EntryPoint_DataEventReciever and have the
notification called by the EntryPoint_DataEventServer
when a new DataEvent is ready.

It is possible to put filtering of events into the
DataEventObserver class via a child class.
DataEventObserver_StdFilter is designed
for filtering of DataEvents with alerts only.

Serving module interface Receiving module interface

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Information Specification

page 8

The Information Specification describes in UML the
information found in a CBM system. This specification was
developed in conjunction with OSA-EAI CRIS.

There are six main categories of information:

Dynamic Data (on platform)
Configuration Data (not typical for on platform)
Explanation Data (on platform optional)
Control Data (simple user option)
App Data (simple user option)
Error Data (simple user option)

Each of these is individually addressable in the interfaces.

It is suggested that only Dynamic Data is required to be
used in embedded systems such as a small platform IVHM
system where configuration is known and engineering units
are built in. The addition of configuration data especially
forces users to put into these systems information not
typically found there. That adds development time for
something of very limited or no use within its present realm.

For such systems, MIMOSA servers which contain the
configuration information may exist at servicing locations.

Information Specification

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

organizational

configuration

dynamic data

explanation

general

The legend explains some of the OSA-CBM specific nomenclature.
Note especially the '-', '+', and '#' used to indicate parameter optionality and count.
These symbols have different meanings from those in the standard UML specification.

control

- (dash) is for an optional parameter + (plus) is for a non-optional parameter # (pound) is for an array parameter

Information Specification - EntryPoint Classes

The EntryPoint interface provides direct access to the following classes.
The remaining thrust of this document describes their details in UML form.

Data

Configuration

Explanation

Extensible types are for application-specific purposes. Certain applications
may require these specific categories of information for setup, control,
and error reporting.

Extensible

ConfigRequest

page 9

ConfigRequest allows a client to request
a subset of Configuration data.

Legend

Interface Access ClassesOSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

DataEventSet

+site : Site
+id : unsigned long
+time : OsacbmTime
-alertStatus : bool

DataEvent

+id : unsigned long
-site : Site
-confid : double
-time : OsacbmTime
-alertStatus : bool

#dataEvents

1..*

Configuration

ExplanationDataSet ExplanationDataRefSet ExplanationSrcs ExplanationSrcsStr

ControlChange

#parameters : Parameter

ControlRequest

#parameters : Parameter

ControlInfo

#parameters : Parameter

AppChange

#parameters : Parameter

AppRequest

#parameters : Parameter

ErrorRequest

#parameters : Parameter

AppInfo

#parameters : Parameter

ErrorInfo

#parameters : Parameter

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

page 10

MonitorIdGroupList
MonitorIdGroup
MonitorId

MonitorId

-site : Site
+id : unsigned long
+type : DataIdType
-itemId : ItemId

1

#monitorId0..*

MonitorId is a reference to a
monitored measurement location,
agent, or agent / item.
Its main change from version 3.1
was to add the selection filter

MonitorIdOSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

MonitorIdGroupList

MonitorIdGroup

+site : Site
-dataEventSetId : unsigned int
-alertFilter : ALERT_FILTER_SETTING

1 #monitorIdGroup0..*

TimeSelect

-timeStart : OsacbmTime
-timeEnd : OsacbmTime
-snapshotStart : int
-snapshotEnd : unsigned int
-decimate : unsigned int

1

-timeSelect0..1

SelectionFilter

1

#selectionFilter0..*

AgentAlertFilter

-itemId : ItemId
-eventType : MIMExtType
-severityType : MIMExtType

MeasLocAlertFilter

-alertTypeSite : Site
-alertTypeId : unsigned long
-alertTypeCode : unsigned long
-alertSeverity : MIMExtType
-regionRef : AlertRegionRef
-regionEnum : EnumValue

Some additional notes:
1) The Site value in MonitorId is used as an override
to the site used in MonitorIdGroup when the two are
not the same.

2) SelectionFilter contains a list of attributes for
specific purposes. The usage type must be
applicable to the type indicated by the MonitorId.
MeasLocAlertFilter is applicable to DA,DM,SD layers
AgentAlertFilter is applicable to HA,PA,AG layers

MonitorIDGroupList contains a list of MonitorIDGroups.
It is used directly by the Asynchronous interface.

MonitorIdGroup corresponds to the DataEventSet level.
It is used directly by the Synchronous interface

MonitorGroup is used as follows:
(1) If a module has a common set of data
to provide, it can be requested using
DataEventSetId. DataEventSetIds correspond
to OutPortSets' id fields in Configuration.
No MonitorIds need be added when requesting
data using a DataEventSetId.

(2) When not using a DataEventSetId,
desired data channels can be requested using
an array of MonitorIds.

Synchronous versus Asynchronous Usages

The Synchronous Interface must return all data in one call. Therefore epRequestDataEventSet will return all applicable dataEvents in the
one DataEventSet. Additionally, the Synchronous Interface will mainly be for historical data.

The Asynchronous Interface provides an unlimited number of unsolicited DataEventSets to the supplied entry point. It can therefore support a
large variety of applications. This interface will return all applicable DataEventSets to the EntryPointSink.

If TimeSelect is not used then assume present time.
Snapshot indicates the number of DataEventSets
before or after the time specified. snapshotStart
must be <= 0; snapshotEnd must be >= 0.
Snapshot 0 is at timeStart or present time.
Decimate means to send only one out of every
<decmiate value> DataEvents, e.g.<3> => 1-in-3
EntryPoints may (1) not support this
or may support one or more of the following
(2) TimeRange only, or (3) TimeRange with decimate
(4) timeStart, (5) timeStart with decimate
(6) timeStart with snapshot
(7) timeStart with snapshot and decimate

«enumeration»
ALERT_FILTER_SETTING

-ALL_EVENTS = 0
-ALERT_EVENTS_ONLY = 1
-NO_EVENTS = 2
-CHANGED_VALUE_EVENTS = 3

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

OutPortSet

Configuration

ModuleDescriptor

+modIdSite : Site
+modIdCode : int
+modTag : String
-modName : String
-description : String
-version : String

1 +moduleId1..*

PortRef

+monitorId : MonitorId
-inPort : Port

ModuleRef

+modId : MIMKey2
-chType : ChannelType

1 -inportRefs0..*

1 +supportingData1

1

-inportModuleSet0..*

1

-algorithms0..*
1

-outPortSet0..*

page 11

Configuration gives information about an OSA-CBM module's input sources,
a description of algorithms used for processing input data, a list of outputs,
and various output specifics such as engineering units, thresholds for alerts, etc.

Configuration

ModuleRef gives information about where a module gets data from.

Algorithm describes the process used to generate a DataEvent.

OutPortSet lists each Port provided by the module. A Port is a 'data channel' and the
Port class gives specific configuration data for that data channel.

SupportingData gives additional information about MIMOSA primary key
references which may be used elsewhere in this architecture.

ModuleDescriptor gives a top level description of the module/entryPoint.
modIdCodes should correspond to OutPortSet ids and DataEventSet ids

Configuration

See config_data_out
page for greater detail

See config_support
page for greater detail

«enumeration»
ChannelType

-MODULE_DEFAULT = 0
-RTN_ON_REQUEST = 1
-RTN_ALL = 2
-RTN_ALERTS = 3

ChannelType allows for the specification of the desired type of data
response from the lower module. Only the EntryPoint_AsyncDynamic
with its return connection path allows for the use of this connectivity specification.

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Algorithm

+id : MIMExtType
+verNum : unsigned long
+startTime : OsacbmTime
+algorithmType : MIMExtType
-userTag : String
-name : String
-description : String
-URIprocessDesc : String
-URIaprocType : MIMExtType
-URIbdType : MIMExtType
-processDesc : String
#processDescBinary : byte
-algProcType : MIMExtType
-procBdType : MIMExtType

SupportingData

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

See config_alg page
for greater detail

DataEvent

+id : unsigned long
-site : Site
-confid : double
-time : OsacbmTime
-alertStatus : bool

DataEventSet

+site : Site
+id : unsigned long
+time : OsacbmTime
-alertStatus : bool

#dataEvents1..*

DataEvent contains the data generated by one event of one Port.

The DataEvent child hierarchy below it is associated with particular layers in the
OSA-CBM architecture. Those classes have child classes below them
describing particular data types.

Port contains the configuration information specific to one output channel
of a module. The Port child heirarchy associates to a particular layer in
the OSA-CBM architecture.

Time on DataEvent is optional. If it is used, it is meant to override the time from
DataEventSet. It is also used when fetching single DataEvents from a
DataEvent Server.

DADataEvent
DMDataEvent

PADataEvent

SDDataEvent

HADataEvent

Port

+id : unsigned long
+lastUpdate : OsacbmTime
-config : String
-name : String
-userTag : String
-osacbmDataType : OsacbmDataType
-site : Site

OutPortSet

+site : Site
+id : unsigned long
+verId : unsigned long
-templateSite : Site
-lastUpdate : OsacbmTime

#outPorts 1..*

Port contains configuration/metadata about
a specific DataEvent 'channel'. The attribute id
equates to a MIMOSA meas_loc_id (DA,DM,SD) or
agent_id (HA,PA). The id, along with Site specified in
OutPortSet, forms a complete MIMOSA meas_loc or
agent primary key identification set.

OutPortSet is optional, but any application that wants or
requires strong meta information, such as engineering
units, should use it.

The id used by a DataEvent will be the same as the id
used by the associated Port. A system that serves
DataEventSets should keep array order constant.

The DataEvent optional parameters on time and
site override the values present in DataEventSet.

DataEventSet

page 12

SDPort

DAPort
DMPort

PAPort
HAPort

OutPortSet

DataEventSet and OutPortSet

AGPort

AGDataEvent

Configuration

-outPortSet0..*

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Note: AlertRegion is used by
DAPort, DMPort, and SDPort.

ItemAlertRegion is used by
HAPort, PAPort, and AGPort.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

#inputData0..*

#algorithms *

AlgorithmInputData is a reference
to the data used and possibly a name
used by the algorithm for that data
reference.

Configuration

AlgorithmInputData

+argId : unsigned long
+inputRef : MonitorId
-name : String
-userTag : String
-desc : String
+expectedEu : EngUnit
-expectedDataType : OsacbmDataType
-dataContentType : MIMExtType

Algorithm describes the process used to
generate a DataEvent given the input data.

Algorithm describes a particular algorithm being
used to generate data for one or more Ports.
Each algorithm output will be associated with one
specific module Port.

page 13

AlgorithmInputReal

+argId : unsigned long
+value : double
-name : String
-userTag : String
-desc : String
+eu : EngUnit
-lastUpdate : OsacbmTime
+constant : Boolean

#inputReals0..*

AlgorithmInputInt, AlgorithmInputReal and
AlgorithmInputChar are lists of semi-static
values used to control or indicate the
functionality of the algorithm in question.

AlgorithmInputInt

+argId : unsigned long
+value : Integer
-name : String
-userTag : String
-desc : String
+eu : EngUnit
-lastUpdate : OsacbmTime
+constant : Boolean

#inputInts0..*

Configuration
Algorithm

AlgorithmOutput

+argId : unsigned long
+startTime : OsacbmTime
-name : String
-userTag : String
-desc : String
+outputEu : EngUnit
+outputRef : MonitorId

AlgorithmModel

+comp_model_id : MIMExtType
+alg_model_id : unsigned long
-algNameForModel : String
-name : String
-userTag : String
-desc : String
-lastUpdate : OsacbmTime
+manufacturer : MIMExtType
-version : String

AlgorithmInputChar

+argId : unsigned long
+value : char
-name : String
-userTag : String
-desc : String
+eu : EngUnit
-lastUpdate : OsacbmTime
+constant : Boolean

#inputChars0..*
#models0..*

AlgorithmModel is a reference to a computational
model used by the algorithm. This includes models
of the type usage, prognostic, and diagnostic
referenced in earlier OSA-CBM versions.

#algorithmOutputs 1..*

AlgorithmOutput describes a specific output of an
algorithm to be associated with a specific OutPort.

Configuration AlgorithmOSA-CBM UML Specification 3.2

Algorithm

+id : MIMExtType
+verNum : unsigned long
+startTime : OsacbmTime
+algorithmType : MIMExtType
-userTag : String
-name : String
-description : String
-URIprocessDesc : String
-URIaprocType : MIMExtType
-URIbdType : MIMExtType
-processDesc : String
#processDescBinary : byte
-algProcType : MIMExtType
-procBdType : MIMExtType

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

1

-supportingData0..1

Configuration

Supporting data gives additional information
about MIMOSA MIMKey references which
may be used elsewhere in this architecture.

For example, Agents are referred to only
by their MIMKey2 handle. Configuration
supporting data can be used to reveal
the detailed information about them.

Configuration
SupportingData

MIMAgentItem

Item and Function
See Item page
for greater detail

Function

MIMAgent
See MIMAgent page
for greater detail

1

#items0..*

SupportingData

1

#funcs0..*

1

#agents0..*

page 14

Configuration SupportOSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

ConfigRequest

+rtnAll : Boolean
-rtnModDesc : Boolean
-rtnConfigRequest : Boolean
-mList : MonitorIdGroup
-specialReq : String

ConfigurationRequest is used in the
entry point interface method to select
possible subsets of the Configuration
data to reduce the size of the returned
request.

An OSA-CBM module, especially at the HA or PA level, may have a large
list of supported components, like Items (i.e. Assets and Segments), Ports, Algorithms, Agents, etc.

The ConfigRequest is for future capability to be able to request a subset of that data.

page 15

ConfigRequest

Configuration Request

Parameters:

rtnAll - overriding parameter to state all configuration information is desired.

rtnModDesc - indicates whether the module description is desired as part of the return.

rtnConfigRequest - indicates if the ConfigRequest is desired as part of the return.
This is used as confirmation that the request was properly received.

monitorIdList - list of data channels or agent/monitored components in the configuration subset.

specialReq - is for future extensible detailed subset request.

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Explanation

Explanation consists of four possible forms depending upon the application.

The ExplanationDataSet is simply the data used for a calculation.

ExplanationDataRefSet is a handle / timestamp type of reference to the data used. This is used when the data comes
from a well-known location or it is known to be stored somewhere. The main example is using data stored in a database.

ExplanationSrcs and ExplanationSrcsStr are two different ways of giving direct access to the modules supplying the data.
The former is a set of direct pointers to modules. The other latter a "stringified" form of a pointer that will allow a user
to construct a pointer to the module.

ExplanationSrcs

+used : Boolean

Explanation Forms

ExplanationSrcsStr

+used : Boolean

Explanation is the data or a reference to the data
used by a module to produce an output.

ExplanationDataSet

+used : Boolean

ExplanationDataRef

+resultDataRef : DataRef

1

#explDataEventSets0..*

ExplanationDataRefSrc

+sourceDataRef : DataRef
+explType : MIMExtType
-explTypeDesc : String

1

#explDataRefSrcs0..*

EntryPointStringified

+epStr : String

1

#strEntryPoints0..*

Note, if a form is not used, set the boolean 'used' to false and return an empty set.

page 16

Note on "used" boolean

ExplanationDataRefSet

+used : Boolean

1

#explDataRefs0..*

Explanation

There will be many types of standard
MIMOSA OSA-CBM explanation types.

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

EntryPoint here requires future improvement. Class name
will be changed to EntryPointHolder. It will allow for any type
of entryPoint in type safe down case manner.

Class EntryPointHolder{
Site moduleSite;
unsigned int moduleId;
EntryPointType epType; // MIMNonExt
};

Class EntryPointHolder_Type1:public EntryPointHolder{
EntryPointHolder_Type1& ep;
};

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

DataEventSet

+site : Site
+id : unsigned long
+time : OsacbmTime
-alertStatus : bool

Extensible Components

These are called the extensible components because they are
application specific and meant to hold any kind of data. The
parameter class can be extended as necessary to provide
ways to read and write parameters on a module.

GeneralParameter is recommended to provide application-
specific parameters in a standard, human-readable format.

Error specific is the concept of indicating an
error condition. Errors are application specific.
However as the standard progresses, specific
activities may start to standardize errors.
For example, invalid web requests using XML
over HTTP will have a standard return response.

Note: Connected state configuration will allow
for unsolicited error notification.

Because these classes are application-specific, they are optional.
It is acceptable if a small embedded system does not want to use
them or wants to use them in a very narrowly defined way.

Application SpecificControl Specific Error Specific

Control is the concept of being able to
change module parameters on the fly.

One major use would be to be able to
change a threshold alert monitor's
threshold settings on the fly to adjust
to present operating conditions.

epNotify

epRequest

Notify
Rtn

epNotify

epRequest

Notify
Rtn

epRequest

Notify
Rtn

Application specific is the concept of being
able to interact with a module in an
application specific way.

One possible use might be to request extra
non-standard information about a module.

The outside world will not notify
an entry point about an error.

page 17

Extensible ComponentsOSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Parameter

-description : String «enumeration»
XmlDataType

+boolean = 0
+dateTime = 1
+decimal = 2
+double = 3
+float = 4
+integer = 5
+string = 6

ControlChange

#parameters : Parameter

ControlRequest

#parameters : Parameter

ControlInfo

#parameters : Parameter

AppChange

#parameters : Parameter

AppRequest

#parameters : Parameter

AppInfo

#parameters : Parameter

ErrorRequest

#parameters : Parameter

ErrorInfo

#parameters : Parameter

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

GeneralParameter

+dataType : XmlDataType
+name : string
+value : string

GeneralParameter is an all-purpose parameter
that can be implemented in nearly any language.
More specific parameter types can be added,
inheriting from Parameter to implement
strong typing, better indexing, or other
functionality.

MeasLoc_MIM

+segOrAs : SegOrAs
-segment : MIMKey2
-asset : MIMKey2
-mim_user_prefix : String
-update_interval : double
-updateEU : EngUnit
-collect_duration : int
-collectEU : EngUnit
-barCode : string

segOrAs should be either 'S' for segment or 'A' for asset.

According the MIMOSA OSA-EAI concept of usage, the
Segment or Asset reference here is for the physical source
of the measurement or calculation. Essentially, this allows a
measurement location to have a closely associated
segment or asset.

The inheritance aspect is for future growth. For example, a
standard for sensor data could be added as another type.

Measurement Location (DA, DM, SD)

1

-transd0..1

1

-dataSrc0..1

page 18

The MIMOSA measurement location id should correspond to ids found in
DataEvent and OutPort in the lower three layers (DA, DM, SD).

TransducerMeasInfo

+transdType : MIMExtType
-ta_orient_deg : int
-trAxDirType : MIMExtType
-mim_loc_seq : string
-motion_direction : char

DataSourceMeasInfo

+dataSrcType : MIMExtType
-mLocCalcType : MIMExtType
-mCalcSize : float

MeasLoc

+measLocId : MIMKey2
+measLocType : MIMExtType
-name : String
+userTag : String

Measurement LocationOSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Segment

-segmGroup : boolean
-segmentType : MIMExtType

Item

page 19

Function

Function

+item_id : ItemId
+func_db_site : Site
+func_db_id : unsigned long
+seq : unsigned long
-userTag : string
-name : string
-by_agent : MIMKey2

Asset

-serialNo : string
-assetType : MIMExtType

The Item page details the Item and Function classes
that may be used or referenced elsewhere in this document.

Item Function Classes

Transducer

+transdType : MIMExtType
+outEU : EngUnit
-outAmpl : double
-calibEU : EngUnit
-lastCalib : OsacbmTime
-selfPowered : Boolean
-name : string

DataSource

+dataSrcType : MIMExtType

The UML concept here is that Item will cleanly inherit down to either
Segment or Asset as shown on the Utility page. AssetInfo will contain
extra information associated with an Asset.

AssetInfo is an OSA-CBM extensible class allowing for growth as
needed to describe an Asset properly in accordance with application needs.

AssetInfo

1

-assetInfo0..1

A Function in MIMOSA terms is
always associated with an Item.

ItemId

+segOrAs : SegOrAs
+site : Site
-code : unsigned long
-userTag : String
-name : String

ItemId is only a reference to
either a Segment or an Asset.
Either Code or userTag
MUST be entered to identify
the system component.

OSA-CBM UML Specification 3.2

1

-dataSource0..*

1

-transd0..*

ItemId

Release � Sept. 12, 2008

Item

+id : MIMKey2
-userTag : string

«enumeration»
SegOrAs

-SEGMENT = 0
-ASSET = 1

MIMOSA CRIS utilizes the
term seg_or_as for SegOrAs.
It specifies it to be a single
character where
'S' is for segment and
'A' is for asset.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

page 20

This page details the MIMAgent class
that is referenced elsewhere in this document.

Agent Classes

MIMAgent

+agent_site : Site
+agent_id : unsigned long
-agentType : MIMExtType
+name : string

1

#roles0..*

MIMAgent and Roles

1

#outputs0..*

1

#inputs0..*

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Role

+id : MIMKey2
-agentRoleType : MIMExtType

PortRef

+monitorId : MonitorId
-inPort : Port

PortRef

+monitorId : MonitorId
-inPort : Port

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

PropEvent

-confid : double
-likelihood : double
-criticality : int
-estStart : OsacbmTime
-estEnd : OsacbmTime
+eventType : MIMExtType
-chgPattType : MIMExtType
-severityType : MIMExtType
-name : String
-userTag : String
#hypEventType : MIMExtType
+itemId : ItemId
#funcs : Function

LogicalConnector

-likelihood : double
+nodeId : int

AndConnector OrConnector

#disjuncts

1

1

#conjuncts1..*

1 NotConnector

+notArg

1

1LeafConnector

1
+atom1

The LogicalConnector provides for any style of ambiguity group by using
combinations of the AndConnector, OrConnector, and NotConnector classes.

The LeafConnector class gives information about the proposed event fault.

A single LeafConnector without using the And, Or, and Not Connectors
is the simplest form used to describe a single determined fault.

PropEvent contains information about what the MIMAgent
proposes or interprets to be the cause of input data, in terms
of a physical or function fault list.

EventType relates to the cause of this proposed event.
hypotheticalEvent(s) relates to failure modes or mechanisms.

Proposed Event for Failure Descriptions (HA,PA)

page 21

PropEventExplanation is an optional attribute.
Each individual ProposedEvent may have an associated
explanation list of references to specific data sources that
indicate a reason for that specific leaf component.
Typically, this list should be a subset of the main explanation
data set for the overall ambiguity group description.

Proposed Event

nodeId is
unique within
an ambiguity set

1

-propEventExplanation0..1

OSA-CBM UML Specification 3.2

PropEventExplanation

#dataSets : ExplanationDataSet
#dataRefs : ExplanationDataRefSrc

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

eventType is the same as that used in asset event
and segment event tables.
It can be tied to the segment recommendation table.

«type»
MIMExtType

«type»
MIMNonExtType

MIMKey1

+code : unsigned long
-name : String

MIMKey2

+site : Site
+id : unsigned long
-name : String

MIMKey3

+site : Site
+dbId : unsigned long
+code : unsigned long
-name : String

MIMKeys: MIMOSA Table Keys

typedef MIMKey1 MIMNonExtType
typedef MIMKey2 Handle
typedef MIMKey3 MIMExtType

«type»
Handle

MIMKey Type Defs

«enumeration»
DataIdType

-meas_location = 0
-agent_id = 1

DataRef

+site : Site
+id : unsigned long
+dataIdType : DataIdType
+time : OsacbmTime
-dataType : OsacbmDataType
-itemId : ItemId

DataReference

page 22

«enumeration»
OsacbmDataType

-InvalidUnsetType = 0
-DAWaveform = 1
-DABLOBData = 2
-DAVector = 3
-DADataSeq = 4
-DAReal = 5
-DAInt = 6
-DABool = 7
-DMAmpl = 8
-DMBLOBData = 47
-DMVector = 9
-DMRealFrqSpect = 10
-DMCmplxFrqSpect = 11
-DMCPB = 12
-DMReal = 13
-DMInt = 14
-DMBool = 15
-DMRealWaveform = 16
-DMCmplxWaveform = 17
-DMDataSeq = 18
-DMUserDef = 19
-SDReal = 20
-SDInt = 21
-SDBool = 22
-SDEnum = 23
-HADataEvent = 24
-PADataEvent = 25
-PARUL = 26
-PARULDist = 27
-PAFutureHlth = 28
-PAFutureHlthTrend = 29
-AGDataEvent = 30
-DAUnknown = 31
-DMUnknown = 32
-SDUnknown = 33
-HAUnknown = 34
-PAUnknown = 35
-AGUnknown = 36
-DAInvalid = 37
-DMInvalid = 38
-SDInvalid = 39
-HAInvalid = 40
-PAInvalid = 41
-AGInvalid = 42
-DEUser = 43
-SDEnumSet = 44
-SDTestReal = 45
-SDTestInt = 46

Site

+category : SITE_CATEGORY
-siteId : String
-regId : String
-userTag : String
-systemUserTag : String

Site is globally uniquely identified by one of two methods. Either the MIMOSA assigned
16 hex character siteId or the (regId, userTag) string combination where regId is assigned
by MIMOSA for a specific registered user and the userTag is uniquely assigned by the
registered user for each of the registered user's mobile platforms.

More specifics on these strings is described in the MIMOSA CRIS documentation.

Site

MIMNonExtType is a MIMOSA non-extensible type. It is therefore a single integer.
Handle is used to indicate a specific MIMOSA measurement location (DA,
DM,SD) or agent id (HA,PA,AG).
MIMExtType is a MIMOSA extensible type. It has three keys: site, dbId, and code.
(Handle, code) may be put into a MIMExtType number to form its value. In this case,
it would typically refer to a MIMOSA database id.

Information References

DataIdType descibes what kind of id a DataEvent id
references. OSA-CBM DataEvents from the lower three
layers DA, DM, and SD are MIMOSA measurement locations.
OSA-CBM DataEvents from the higher three layers, HA
PA, and AG, are MIMOSA agents. The DataEvent ids from
these different data types therefore correspond to these two
types of sources: agents and measurement locations.

DataRef is a reference to one data item.
It is essentially a descriptor to one DataEvent
value. Explanation uses this as a type of
data pointer.

DataIdType

OSA-CBM UML Specification 3.2

«enumeration»
SITE_CATEGORY

-SITE_ZERO = 0
-SITE_ENT_ZERO = 1
-SITE_PLAT = 2
-SITE_TEMPLATE = 3
-SITE_SPECIFIC = 4
-SITE_ZERO_ONE = 5
-SITE_ZERO_TWO = 6
-SITE_PLAT_TRNG_DATA = 7

SITE_CATEGORY indicates specific site types.

SITE_ZERO is MIMOSA (0, db_id=0).
SITE_ENT_ZERO is for platform
enterprise site zero entry.
SITE_PLAT is for site platform.
SITE_TEMPLATE is for platform template.
SITE_SPECIFIC is for all other sites and needs
to be added into the system directly or indirectly.
SITE_ZERO_ONE is MIMOSA (0,db_id=1).
SITE_ZERO_TWO is MIMOSA (0,db_id=2).
SITE_PLAT_TRNG_DATA is for simulated platforms.

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

EngUnit and Enum Type

LocalTime

+hourDelta : int
+minDelta : int
+dst : boolean

OsacbmTime

+time_type : OsacbmTimeType
-time : String
-time_binary : unsigned long long(idl)

1
-localTime0..1

page 23

Time has been expanded to have a
few different internal content form
types. This is to allow the simplest
most direct method of handling
time to be incorporated for a
specific embedded system.

'time' as string should be set to
the MIMOSA format which is
a string conforming to ISO 8601.
See description to the right.

'time_binary' is defined for a
binary format indicator of time.
There are two main types:
POSIX and tick.

Posix is a Unix type time, which is
also fetched in terms of the data type
long long.

Methods to access specific time
portions is highly desirable for
any implementation.
Any language implementation should
have methods:
uint getYear()
uint getMonth()
...
ushort getHour()
...
ushort getMicrosec()
ushort getNanosec()

methods should interpret Tick or
Posix accordingly.

All rtn types are integer
EXCEPT getTick which is an
unsigned long long
64 bit int.

EnumValue

+value (see note) : int
-name (see note) : string
-enumEU : EngUnit

Enum value is uniquely identified by EngUnit plus value.
Name may be transmitted optionally.

OutPort should have a corresponding EngUnit for transmitted values.
Therefore, in a DataEvent transmission the DataEvent id can link to EngUnit
from the OutPort; only a value may be needed in the actual DataEvent if
shortness of expression is desired.

RefUnit

+id : MIMNonExtType

UnitConverter

+multiplier : double
+offset : double

-unitConv0..1 -refUnit 0..1

The Utility page details some classes that are
used or referenced elsewhere in this document.

Utility Classes

EngUnit

+site : Site
+dbId : unsigned long
+code : unsigned long
-name : String
-abbrev : String

OSA-CBM UML Specification 3.2

OSA-CBM uses the name
OsacbmTime to eliminate
clashing of class names.
Either 'time' (as a string) or
time_binary should be used.

Release � Sept. 12, 2008

Date/time in ISO 8601 variable length character form:
YYYY-MM-DDThh:mm:ss.fffffffff
example 2006-05-31T14:30:33.123

where:
YYYY = four-digit year
MM = two-digit month (01=January, etc.)
DD = two-digit day of month (01 through 31)
hh = two digits of hour (00 through 23)

(am/pm NOT allowed)
T = literal "T" character
mm = two digits of minute (00 through 59)
ss = two digits of second (00 through 59)
fffffffff = represents a decimal fraction of a second

to the billionth of a second

Year, month, and day must be specified. Additional timestamp
content should be provided, if known. Zeros will be assumed
for the omitted values. Negative DATETIME is not supported.
All suffixes after the 29th character provided in the ISO 8601
specification, such as "Z" (representing Coordinated Universal
Time (UTC), are not necessary since the CRIS specification
explicitly manages local offset hours and minutes as distinct
columns associated with the UTC (referred to in the CRIS
specification prefixed with "GMT") column.

Note that the actual difference between the new
DATETIME(10:29) data type and the CRIS V2.1 fixed-length
STRING(29) form is the separator between date and time
information is now a literal �T� instead of a blank space, the
separator for the billionths of seconds is now a dot (�.�)
instead of a dash (�-�), and trailing items after the
year-month-day fields may be omitted.

POSIX time is a signed integer indicating a time since the Unix
epoch time 00:00:00 UTC on January 1, 1970. LSB value
is a multiplier to give time distance from the epoch time. Bytes
used can vary and determines how wide the time range
around the epoch time can be. The OsacbmTimeType for
POSIX indicates the LSB value and number of bytes used.
The following indicates some of the possible time ranges

Bytes LSB Delta Time to 1970
4 Signed 1 sec +/- 68 years 1901 to 2038
6 Signed 1 mSec +/- 4459 years
8 Signed 1 nSec +/- 292years
8 Signed 1 uSec +/- 74 million years

Time Tick is for an embedded system that uses a counter
as a timer, typically since power up. Three specified versions
are for nano, micro, and milliseconds. Other variations from
this should use _SYSTEM_TICK. It is a systemic problem to
convert tick time into a UTC time. This should be done for
any stored or transmitted data.

«enumeration»
OsacbmTimeType

OSACBM_TIME_MIMOSA = 0
OSACBM_TIME_POSIX_NSEC_8 = 1
OSACBM_TIME_POSIX_USEC_8 = 2
OSACBM_TIME_POSIX_USEC_6 = 3
OSACBM_TIME_POSIX_MSEC_6 = 4
OSACBM_TIME_POSIX_SEC_4 = 5
OSACBM_TIME_TICK_NSEC = 6
OSACBM_TIME_TICK_USEC = 7
OSACBM_TIME_TICK_MSEC = 8
OSACBM_TIME_SYSTEM_TICK = 9

Time

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Alerts and Regions

AlertRegion_CBM

-minAmpl : double
-minInclusive : boolean
-maxAmpl : double
-maxInclusive : boolean
+amplEU : EngUnit
-regionEnum : EnumValue
-minAmplHysteresis : double
-maxAmplHysteresis : double
-hysteresisEU : EngUnit
-bandDelay : double
-bandDelayEU : EngUnit
-meas_loc_type : MIMExtType
-mloc_calc_type : MIMExtType
+hiLowSideUsed : boolean

page 24

Hyterisis and BandDelay are used to reduce threshold nuisance crossings.
A region is activated when:
1) Threshold amplitude is crossed when no BandDelay and no Hysteresis.
2) Threshold amplitude is crossed for more than BandDelay time.
3) Threshold amplitude is crossed by more than Hysteresis value.
3) Threshold amplitude is crossed by more than Hysteresis value for BandDelay time.

The simplest method of use is to have a single set of alertRegions for an output and a direct set of alert types for those regions.
The system should be set up so that AlertTypes and AlertRegions are all unique within the system. Then
only a single int is needed to identify the code, the RegionId, and the AlertTypeCode respectively.
The Alert classes are based on the MIMOSA OSA-EAI CRIS. Substitute the term Alert for Alarm. The OSA-CBM version
has a few extra parameters like those for hysterisis and hiLowSideAlert indicator.
The main principles for optional arguments are:
For those terms that are primary keys in CRIS: if they are not used, then they should be elsewhere in the information schema,
i.e. if Site is not specified, use the site found in DataEventSet. For those terms that are not primary keys, like name, they may
simply be expected to be found in a database. In short, assume that they are not needed for an operational
monitoring system and would only make the system less efficient.

Usage
Concept

A set of AlertRegions will be associated with a specific OutPort. The value associated with the AlertRegion set
is contained in the DataEvent with the same id as the OutPort.

When the value contained in a DataEvent activates an AlertRegion, the DataEvent will contain a NumAlert associated to the
AlertRegion along with the time of occurance stored in the lastTrigger. In a condition-based monitoring system, the following DataEvents
from that OutPort will have new values and new times. However, the NumAlert will remain the same while in that region.
This includes the lastTrigger time which may be used as an indicator of how long a particular region has been in effect.

When a Region is first entered it gives the specific DataEvent an "Alert Status". For CBM modules supporting "Alert Status"
functionality, the output can be suppressed to output only when an alert trigger occurs. This mechanism requires one of
the connected-type interfaces.

(RegionId, OutPort handle) can be the identifier used by a higher module to control threshold levels via a user
defined ControlVector. Future versions of the standard will begin to create a standard UML/XML form for this control.

NumAlert carries with it information about:
(1) AlertType directly from AlertRegion.
(2) Optional regionId for direct tie to the region.
(3) Optional enum value associated with region.

Simplest usage:
1) Set alertTypeCode to predefined values.
2) OSA CBM convention is for unused alertTypeId
to mean alertTypeId = 0 which should be based
on platform Site.
3) OSA CBM convention is for an unused alertTypeSite
to mean use the Site found in the DataEventSet.

The DataEventSet Site is typically the platform Site.
Thus unused alertTypeSite and alertTypeId
corresponds to a MIMOSA database id of
(platform_site, 0) .

Hysteresis
BandDelay

AlertsOSA-CBM UML Specification 3.2

AlertRegion_CBM is an
extensible type to
allow for future growth
in describing what
should cause an alert.

NumAlert

-alertTypeSite : Site
-alertTypeId : unsigned long
+alertTypeCode : unsigned long
-hiSideAlert : boolean
-lastTrigger : OsacbmTime
-alertSeverity : MIMExtType
-alertName : String
-regionRef : AlertRegionRef
-regionEnum : EnumValue

AlertRegion

+regionRef : AlertRegionRef
+alertType : AlertType
-regionName : String

AlertType

+alertTypeSite : Site
+alertTypeId : unsigned long
+alertTypeCode : unsigned long
-alertSeverity : MIMExtType
-alertName : String

AlertRegionRef

-regionSite : Site
+regionId : unsigned long
-regionLastUpdate : OsacbmTime
-regionSeq : unsigned long

hiLowSideUsed default is
false. MIMOSA OSA-EAI
does not presently support
this functionality.

Hi-Low

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

page 25

Item EventOSA-CBM UML Specification 3.2 Release � Sept. 12, 2008
Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

ItemEvent

+itemId : ItemId
+eventType : MIMKey3
+eventStart : OsacbmTime
-eventStop : OsacbmTime
-name : string
-userTag : string

ItemEventBLOB

+blobDataType : MIMExtType
-ordSeq : unsigned int
+blobContentType : MIMExtType
-userTag : string
-name : string
-assocFileName : string
+image_data : BLOB

1 -itemEventBLOB0..*
1

-itemEventNumReal0..*

ItemEventNumReal

+evNumDataType : MIMExtType
-engUnit : EngUnit
+dataValue : double

ItemEventNumInt

+evNumDataType : MIMExtType
-engUnit : EngUnit
+dataValue : int

1
-itemEventNumInt0..*

ItemEventChar

+evCharDataType : MIMExtType
-engUnit : EngUnit
+dataValue : string

1

-itemEventChar0..*

ItemEvent

ItemEvent supports events in the State Detection
layer that might correspond to the MIMOSA
OSA-EAI tables segment_event and asset_event

ItemEvent can be an OSA EAI asset_event or
segment_event. For those ItemEvents
which do not have a specialized measurement
location, a single measurement location
should be assigned to a top level
machine segment or asset. Usage is mainly
aimed at legacy OSA-EAI applications which used
segment_events and asset_events without
measurement locations.

The OSA-CBM best practice is to use
enumerated types rather than ItemEvents
wherever possible because enumerations
tie together events of a particular type.

Complex

+realValue : double
+imagValue : double

String

+value : string

Value

ByteArray

#values : byte

ShortArray

#values : short

IntArray

#values : int

LongArray

#values : long

FloatArray

#values : float

DblArray

#values : double

CmplxArray

#realValues : double
#imagValues : double

CharArray

#values : char

BooleanArray

#values : boolean

Data

-time : OsacbmTime

Byte

+value : byte

Short

+value : short

Int

+value : int

Long

+value : long

Float

+value : float

Double

+value : double

Char

+value : char

Boolean

+value : boolean

#compositeData

0..*
1

-value0..1

DataType

+id : MIMExtType
-dataType

-dataType0..1

StringArray

#values : string

Composite Data is an optional
attribute of Data class to allow for
a general construction of a data item.

Data class for-user definable types. Read note below on usage.

Optional time parameter
for possible time stamp.

page 26

Composite DataOSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

Data is mainly for user-definable types not in the OSA-CBM specification.
This class set should be used as a last resort. Please report any
required use to the OSA-CBM technical subcommittee.

It is preferred that if there exists an information class that can contain
your data in OSA-CBM then that should be used.

The BLOB class is a more standardized and supported approach to sending
data types that are not directly in the OSA-CBM specification.

Additionally new types, such as multidimensional arrays,
can be added as a new class to the OSA-CBM specification fairly quickly.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

DADataEvent

-dataStatus : DataStatus

DAVector

+xValue : double
+value : double

DADataSeq

-xAxisStart : double
#xAxisDeltas : double
#values : double

DAWaveform

-xAxisStart : double
+xAxisDelta : double
#values : double

DABLOBData

-mEventBlobType : MIMExtType

1

+value1

DAReal

+value : double

BLOB

#data : byte

DAInt

+value : int

«enumeration»
DataStatus

-OK = 0
-FAILED = 1
-UNKNOWN = 2
-NOT_USED = 3

Mime

+value : string

1

+contentType1

page 27

DA: Data Acquisition

DAPort

-valueEU : EngUnit
-xAxisEU : EngUnit

Port

DABool

+value : boolean

DA: Data Aquisition

-measLoc0..1

#alertRegs0..*

DataEvent

OSA-CBM UML Specification 3.2

AlertRegion

See Alert page for
details.

Release � Sept. 12, 2008

MeasLoc

#numAlerts0..*

NumAlert

See Alert page for greater detail.
NumAlert has meta information
contained in AlertRegion.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

DMDataEvent

-dataStatus : DataStatus

UserDef

RealFrqSpect

+xAxisMin : double
+xAxisDelta : double
#realValues : double

CPB

+cpbBndType
+cntrBnd1Hz : double
+bndWidth : double
#values : double

Ampl

-phase : double
+value : double

RealWaveform

-xAxisStart : double
+xAxisDelta : double
#realValues : double

DMVector

+xValue : double
+value : double

Data

1

+value1

WindowType

+id : MIMExtType
+pf_multiplier : double

DMReal

+value : double

DMDataSeq

-xAxisStart : double
#xAxisDeltas : double
#values : double

«enumeration»
BndType

-percent = 0
-octave = 1

Utility classes for DM Layer

CmplxFrqSpect

+xAxisMin : double
+xAxisDelta : double
#realValues : double
#imagValues : double

CmplxWaveform

-xAxisStart : double
+xAxisDelta : double
#realValues : double
#imagValues : double

DMInt

+value : int

page 28

DM: Data Manipulation

DMPort

-valueEU : EngUnit
-xAxisEU : EngUnit
-phaseEU : EngUnit

Port

MimTypeDescriptors

-postScalType : MIMExtType
-windowType : WindowType
-srcDetectType : MIMExtType
-xAxisMax : double
-xAxisMin : double

1 -types0..1

DMBool

+value : boolean

DM: Data Manipulation

xAxisMin and xAxisMax apply
to Ampl as found in MIMOSA CRIS.

Note, UserDef
type may not be
well supported by
most applications.

DMBLOBData

-mEventBlobType : MIMExtType
+value : BLOB

#alertRegs0..*

AlertRegion

-measLoc0..1

DataEvent

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

MeasLoc

#numAlerts

0..*NumAlert

See Alert page for greater detail.
NumAlert has meta information
contained in the AlertRegion.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

SDDataEvent

-dataStatus : DataStatus

SDBool

+value : boolean

SDEnum

+value : EnumValue

SDReal

+value : double

SDPort

-stateEU : EngUnit
-measureEU : EngUnit

SDInt

+value : int

SD: State Detection

page 29

Port

SD: State Detection

#alertRegs0..*

MeasLoc

-measLoc0..1

DataEvent

SDTestInt

+evaluation : EnumValue
+measure : int

SDTestInt and SDTestReal combine an enumeration with a value.
This class set is geared toward a test measurement/evaluation
combination. The measurement is a value which is being checked
against. Evaluation is the test evaluation based on that value.
This class takes the place of three other classes and thus reduces
total overall coding and database effort for a common test activity.

SDTestInt and SDTestReal combine an enumeration with a value.
This class set is geared toward a test measurement/evaluation
combination. The measurement is a value which is being checked
against. Evaluation is the test evaluation based on that value.
This class takes the place of three other classes and thus reduces
total overall coding and database effort for a common test activity.

SDEnumSet

#values : SDEnumSetDataItem

SDEnumSet allows a list of enumerations from a single outport.
The main use is for a representation of the
failed state indicators that many platforms output. A single box, like a
central computer, outputs a list of numbers or string tag identifiers which
represent certain states that occurred during operation. This class will
naturally hold that type of data without the need for a remapping of all
the numbers into separate measurement locations.

The classes SDTestInt, SDTestReal, and SDEnumSet were added to simplify the development of some
very common applications. These are special classes but the wide spread application makes them very useful.
Without them these types of implementations get more complicated.

SDEnumSet eliminates the need for thousands of invented measurement locations.
SDTest eliminates the need to create DMReal, SDEnum, algorithm ties, and explanation type objects and sums the data up into
a single object containing a value and its status: pass/fail/degraded, etc..

SDTestReal

+evaluation : EnumValue
+measure : double

OSA-CBM UML Specification 3.2

AlertRegion

SDEnumSetDataItem

-value : EnumValue
-tag : String

NOTE: Either value,
tag or both must be set
for SDEnumSetDataItem.

Release � Sept. 12, 2008

#numAlerts0..*

NumAlert

See Alert page for greater detail.
NumAlert has meta information
contained in the AlertRegion.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

ItemEvent is an OSA EAI AssetEvent or
SegmentEvent. See comments on ItemEvent
page.

#itemEventConfig0..*

#itemEvents0..*

The configuration may contain
a list of all possible ItemEvents
which can be generated by the
OSA-CBM module.

ItemEvent

SDEvent

ItemEventConfig

+itemId : ItemId
+eventType : MIMKey3
-name : string
-userTag : string

AmbiguityGroup

+ambId : MIMExtType
+estStart : OsacbmTime
-userTag : String
-name : String
-ambiguityType : String
-logConnector : LogicalConnector

-diagnosis0..1

HAPort

-by : MIMAgent
-enumEU : EngUnit

page 30

HA: Health Assessment

Port

HA: Health Assessment

One or both of hLevel and
hGradeReal must be set.

hGradeReal is optional precise health
scale float value between 0 and 1
(1 = perfect health).

hLevel is a new change in the
CRIS 3.1. The MIMOSA site zero
hLevel code is on a 0..100
scale where 100=maximum health.

DataEvent attribute id
is an OSA EAI agent_id
for HA messages.

The boolean healthGood will be true when
agent detects no health problems.
In this case, Diagnosis may be null.
ItemHealth(s) may exist but are expected to
have good health on all indicated items.

healthGood will be false when
there is a problem or potential problem.
Then ItemHealth(s) and/or Diagnosis
should indicate the problem.

ItemHealth

+item_id : ItemId
+utc_health : OsacbmTime
-healthLevelType : HlthLevelType
-hLevel : unsigned long
-hGradeReal : double
-likelihood : double
-chgPattType : MIMExtType

HADataEvent

-healthGood : bool

#itemHealth0..*

DataEvent

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

HlthLevelType

+id : MIMExtType
+health_scale : ushort

NOTE:
HlthLevelType is new in CRIS 3.1.

The proposed usage here is leave
HlthLevelType unused and use
hLevel on a 0..100 scale where
100=maximum health unless
a naming system is desired to
be directly associated with the
health level.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

RUL

+rul : double
-error : double
-postConfid : double

-prognosis0..1

FutureHealth

+hlthGrade : double
+atRef : double
-error : double
-postConfid : double

RULDistrbn

#ruls : double
#cumulProbs : double
#errors : double
#postConfids : double

FutureHlthTrend

#hlthGrades : double
#atRefs : double
#errors : double
#postConfids : double

PADataEventPAPort

-by : MIMAgent
-refOrRulEU : EngUnit

AmbiguityGroup

page 31

PA: Prognostics Assessment

Port

PA: Prognostics Assessment

ItemPrognosis

+item_id : ItemId
-estUTC : OsacbmTime

#itemPrognosis0..*

DataEvent

OSA-CBM UML Specification 3.2 Release � Sept. 12, 2008

RULDistrbn requires ruls and cumulProbs to be specified.
The arrays of errors and postconfids are optional.

FutureHlthTrend requires hlthGrades and atRefs to be specified.
The arrays of errors and postconfids are optional.

The length of all used arrays should be the same.

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

AGDataEvent

page 32

AG: Advisory GenerationPort

AG: Advisory Generation

ItemRequestForWork

-requestId : MIMExtType
+item_id : ItemId
+work_manage_type : MIMExtType
+work_task_type : MIMExtType
-auto_approve : char
-start_before : OsacbmTime
-end_before : OsacbmTime
-start_after : OsacbmTime
-end_after : OsacbmTime
-repeat_interval : unsigned int
-interval_eu : EngUnit
-to : MIMAgent
-solution_package : MIMExtType
+rec_segment : ItemId
-rec_gmt : OsacbmTime
-rec_by : MIMAgent
-work_request : MIMExtType
-work_order : MIMExtType
-name : String

#itemRequestForWork0..1AG: Advisory Generation

The Advisory Generation layer allows for
the direct request of maintenance for Assets and Segments.
It associates to the following MIMOSA tables:

#134 - sg_req_for_work, #135 - as_req_for_work
#184 - sg_recommendation, #185 - as_recommendation
#130 - sg_rec_remark, #131 - as_rec_remark

These tables use the following utility tables:
#128 - work_manage_type, #108 - work_task_type,
#106 - priority_type, #181 - solution_package

Request for Work for Segment
NOTE: start_before_gmt - Request for action to begin before this time
NOTE: end_before_gmt - Request for action to end before this time
NOTE: start_after_gmt - Request for action to start after this time
NOTE: end_after_gmt - Request for action to end after this time
NOTE: from_sy_agent_site - System the request generated from
NOTE: repeat_interval - Time interval to automatically have work re-submitted for time-based actions
NOTE: int_eu_db_site, int_eu_db_id, int_eu_type_code - Time interval eng unit reference (hours, days, months, etc.)
NOTE: to_agent_site, to_agent_id - Agent to recieve the request work
NOTE: sol_pack_db_site, sol_pack_db_id, sol_pack_id - Associated solution package
NOTE: rec_segment_site, rec_segment_id, rec_gmt_recomm, rec_by_agent_site, ec_by_agent_id

- Associated segment recommendation
NOTE: work_req_db_site, work_req_db_id, work_req_id - Associated Work Request in local or remote database
NOTE: abbrev - User-generated short work description
NOTE: name - User-generated full work description

ItemRecommendation

+item_id : ItemId
+gmt_recomendation : OsacbmTime
-by : MIMAgent
-priority_type_code : MIMExtType
-userTag : String
-name : String

ItemRecommendationRemark

+ord_seq : unsigned int
+remark_text : String

#itemRecommendationRemark

0..*

-itemRecommendation1..*

DataEvent

OSA-CBM UML Specification 3.2

AGPort

-by : MIMAgent

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Notes "byAgent", if not used, will be the (Site, DataEvent.id) agent.

Notes

Notes Page 1

OSA-CBM UML Specification Notes

This page ends the UML specification

and starts the notes pages for OSA-CBM.

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

Extensibility

Extensible type classes are for application-specific purposes. IVHM applications may require
these specific categories of information for setup and control. These classes allow for a standard
way to input and output application-specific XML. The getXML is a suggested method for a parent wrapper class.

The main concept is to have a class that is closed to modification but extensible to users
The XML string is used as the conveyor of data.

Implementations should have a getXML(...) method to retrieve a transmittable XML form.

Specific implementations can use the specific form class structure.

XML Extensibilty Concept

Notes Page 2

MeasLoc_1553

-RT : int
-msg : int
-values*...* : double

MeasLoc_MIM

MeasLoc is the Generic Form class.

Other examples of Generic Form classes are:
ControlChange, AppNotify, and AlertRegion
Some generic forms may require attributes that
are expected for all such specific forms.

MeasLoc_MIM is a specific class. It exists
as part of the present standard and holds
the standard MIMOSA meas_loc information.

MeasLoc_1553 is an example of a possible new specific class
created for the purpose of describing a 1553 measurement
location. This is a type of measurement location that a particular
user may find useful. If it is useful to many parties then it
could be added to the standard.

+createForm_MeasLoc()

MeasLoc_XMLDecoderFactory

A received XML string is input into each XMLDecoderFactory
class that it holds until a match is made and a meas_loc object
is constructed.

+createForm_MeasLoc()

MeasLoc_XMLbasedConstructor

+createForm_MeasLoc()
+isApplicable()

XMLbasedConstructor_GenericForm_MeasLoc_1553

1
*

+createForm_MeasLoc()

MeasLoc_1553_XMLbasedConstructor

The developer of MeasLoc_1553 would implement
the getXML() method of Meas_loc to create an XML
string for internet transfer. The developer would also
have to write an XMLbasedConstructor_MeasLoc_1553
to decode the XML string on the receiving side, create
the MeasLoc_1553 class, and fill the received data.

The factory is given a
list of possible specific
XMLbasedConstructors.

+getXML()

MeasLoc

+measLocId : MIMKey2
-MeasLocType : MIMExtType

OSA-CBM UML Specification Notes

Notes

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

OSA-CBM UML Specification Notes OSA-EAI Mapping

Notes Page 3

Mapping Methodologies

The goal is to have OSA-CBM map seamlessly into OSA-EAI.
The OSA-CBM to OSA-EAI mapping will have the following components:

1. A simple 1-to-1 information component mapping.
2. OSA-CBM extensions to CRIS that have extra information that OSA-EAI does not need.
3. A mapping document where difficult mappings or mappings that have many potential solutions

are specified to be done in only one way.

The following provides a quick overview.

Perhaps 90% or more of OSA-CBM will map directly into OSA-EAI with ease.
There also will be some changes and additions in OSA-EAI to facilitate the mapping.
However there are certain differences and some OSA-CBM needs which
are to be handled by OSA-CBM extensions in the MIMOSA specification.
The main requirement for the extensions deals with the ability to get data out of database
storage in the original OSA-CBM format with all class structure intact and easily retrievable
by a generic mechanism rather than having to hard code an expected form for a
particular known configuration.

Main areas for the extensions include:
1) The OSA-CBM class-type definition specifics.

The ability to know which OSA-CBM class was used to transmit the data.
2) OSACBM time stamp-based message identification scheme.

In OSA-CBM, all messages such as measurement events, health assessments, and proposed events
are identified by agent or meas_location, time stamp,
and, in the HA and PA layers, item id. OSA-CBM small signature vehicles are not expected
to generate new integer primary key signatures. The ability to do that would require
non-volatile memory storage of some form to remember last number used.
Instead, OSA-CBM offers a slightly different primary key basis (agent, time, item).
All the same important information components as those found in OSA-EAI are there.
When such a message reaches a the OSA-EAI database location the OSA-EAI proposed
event primary key signature may be generated.

3) Ambiguity Groups
OSA-EAI has been enhanced to accommodate ambiguity groups.

4) Explanation
Explanation is the ability to show a connection between data used as input and resultant data.
The OSA-CBM explanation classes use references within the OSA-CBM context. An OSA-CBM
extensions Explantion table will be used by those desiring this information to be retrievable.

OSA-EAI has many data tie tables for those desiring this information in the OSA-EAI context.

Mapping Methodologies

Release � Sept. 12, 2008

Copyright 2008, Machinery Information Management Open Systems Alliance

Copyright 2008, Machinery Information Management Open Systems Alliance

