
Copyright 2004, Machinery Information Management Open Systems Alliance
1

Tech-Web Client & Server HTTP Binding
Version 3.0

February 25, 2004

This document describes the HTTP binding specifications for OSA-EAI Tech-Web Client
and Servers. The following terminology should be noted:

MUST This word, or the terms "REQUIRED" or "SHALL", means that the
definition is an absolute requirement of the specification.

MUST NOT This phrase, or the phrase "SHALL NOT", means that the definition is an

absolute prohibition of the specification.

SHOULD This word, or the adjective "RECOMMENDED", means that there may

exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED", means that there

may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any
behavior described with this label.

MAY This word, or the adjective "OPTIONAL", means that an item is truly

optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation
which does not include a particular option MUST be prepared to
interoperate with another implementation which does include the option,
though perhaps with reduced functionality. In the same vein, an
implementation which does include a particular option MUST be prepared
to interoperate with another implementation which does not include the
option (except, of course, for the feature the option provides.)

The document will define the HTTP functionality which OSA-EAI Tech-Web clients and
servers MUST support and the functionality clients and servers MAY support. The HTTP
protocol utilized is a subset of the Hypertext Transfer Protocol (HTTP) Version 1.1
specification (RFC 2616) located at http://www.w3.org/Protocols/rfc2616/rfc2616.html .
HTTP is the network protocol used to deliver virtually all files and other data
(collectively called resources) on the World Wide Web. In Tech-Web, HTTP must be
implemented through TCP/IP sockets (though there are other possibilities).
A Tech-Web HTTP client sends an interface request to a Tech-Web HTTP server (Web
server), which then sends responses back to the client. A Tech-Web Client application
must be configurable to allow an end-user to specify the Internet host and port number of
the destination server. If a port number if not specified by a user, the client MUST
default to port 80.

2

Copyright 2003, Machinery Information Management Open Systems Alliance

HTTP Requirements for Tech-Web compliance
Like most network protocols, HTTP uses the client-server model. An HTTP client opens
a connection and sends a request message to an HTTP server; the server then returns a
response message, usually containing the resource that was requested. The HTTP
requirements for Tech-Web compliance are described here. HTTP 1.1 has other optional
features which clients and servers MAY implement.

Tech-Web Clients:

1) MAY use the HEAD request to inquire if a Tech-Web server supports a specific
Tech-Web interface

2) MUST use the POST request to send all requests to a Tech-Web server
3) MUST recognize and support core HTTP server response status codes
4) MUST recognize and handle chunked transfer-encoding from a Tech-Web server

Tech-Web Servers:
1) MUST respond to a HEAD method to allow a client to inquire if a Tech-Web

server supports a specific Tech-Web interface
2) MUST respond to a POST method to send the acknowledgement (results) of a

request to a Tech-Web client
3) MUST use core HTTP server response status codes

3

Copyright 2003, Machinery Information Management Open Systems Alliance

The HEAD Method
The client MAY use the HEAD method to determine if a server supports a particular
Tech-Web interface. The HEAD method request consists of:

• a required set of header lines (see description below)
• optional set of header lines which MAY exist (any additional HTTP V1.1

supported header lines may exist)
• a blank line (i.e. a <CR><LF> by itself)

Required Request Header Lines for HEAD Method

(Tokens are separated by whitespace)

 Token 1 Token 2 Token 3
HEAD Local URI path on the server of the

requested resource, e.g., /mimosaeai
HTTP/1.1

Host: URI of the HTTP Tech-Web server, with
an optional “:” and port number , e.g.,
www.somehost.com:8080
If the port number is not specified, the
default is 80. It is up to the server to
translate this URI into the location of the
application charged with accepting this
request.

MIMInterface: Extension header line which provides
the name of the OSA-EAI Tech-Web
interface the client is requesting, e.g.,
mim_5001

NOTE: In addition to the headers above, a client may include a "Connection: close" header in the HTTP
request if it wishes to close the current connection after receiving the response. The default in HTTP V1.1
is for the server to support persistent connections and allow several requests in series (called pipelining). If
this header is included, the client must not send additional requests on this connection and the client
should close the connection after receiving the response.

The HEAD method response consists of:

• a required set of header lines (see description below)
• optional set of header lines which MAY exist (any additional HTTP V1.1

supported header lines may exist)
• a blank line (i.e. a <CR><LF> by itself)

4

Copyright 2003, Machinery Information Management Open Systems Alliance

Required Response Header Lines for HEAD Method
(Tokens are separated by whitespace)

 Token 1 Token 2 Token 3
HTTP/1.1 response status code that gives the

result of the request, e.g., 200
English reason phrase
describing the status code,
e.g., OK

Date: GMT of the HTTP Tech-Web server in a
fixed-length subset of that defined by
RFC 1123 (an update to RFC 822) in the
form of Day, DD Mon YYYY HH:MM:SS
GMT, e.g.,
Sun, 06 Nov 1994 08:49:37 GMT

The client MUST recognize and support the following core HTTP server response status
codes for the HEAD method:

Core Response Status Codes for HEAD Method
(Tokens are separated by whitespace)

 Status Code Status Reason Meaning/Action
100 Continue During the course of an HTTP 1.1

client sending a request to a server,
the server might respond with an
interim "100 Continue" response. This
means the server has received the first
part of the request, and can be used to
aid communication over slow links. In
any case, all HTTP 1.1 clients must
handle the 100 response correctly
(perhaps by just ignoring it). Unlike
other responses, it is always followed
by another complete, final response.

200 OK Interface is supported by the server
400 Bad Request Client request has invalid syntax. The

client SHOULD NOT repeat the
request without modifications.

404 Not Found The Web server has not found a Tech-
Web server which matches the
requested URI.

500 Internal Server Error The server encountered an
unexpected condition which prevented
it from fulfilling the request.

501 Not Implemented Interface is not supported by the server
505 HTTP Version not supported A version other than 1.1 is being

utilized by the client.

If a client receives any 3xx, 4xx, or 5xx response notices, it MUST treat these responses
as if a transport error has occurred.

5

Copyright 2003, Machinery Information Management Open Systems Alliance

The POST Method
The format of the POST method request consists of:

• a required set of header lines (see description below)
• optional set of header lines which MAY exist (any additional HTTP V1.1

supported header lines may exist)
• a blank line (i.e. a CRLF by itself)
• the message body consisting of an XML request which conforms to the OSA-

EAI Tech-XML schema (e.g. query parameters, or row data to create).

Required Request Header Lines for POST Method
(Tokens are separated by whitespace)

 Token 1 Token 2 Token 3
POST Local URI path on the server of the

requested resource, e.g., /mimosaeai
HTTP/1.1

Host: URI of the HTTP Tech-Web server, with
an optional “:” and port number , e.g.,
www.somehost.com:8080
If the port number is not specified, the
default is 80. It is up to the server to
translate this URI into the location of the
application charged with accepting this
request.

Content-Type: text/xml; charset=“utf-8”
Content-Length: Exact size of the attached XML

message body, i.e., 384

MIMInterface: Extension header line which provides
the name of the OSA-EAI Tech-Web
interface the client is requesting, e.g.,
mim_5001

MIMSchemaName: Extension header line which provides
the name of the OSA-EAI Tech-Web
schema the server should use for
parsing the XML in the message body,
e.g., V3-0-5001-01QuerySite.xsd

NOTE: In addition to the headers above, a client may include a "Connection: close" header in the HTTP
request if it wishes to close the current connection after receiving the response. If this header is included,
the client must not send additional requests on this connection. The client should close the connection
after receiving the response.

The POST method response consists of:
• a required set of header lines (see description below)
• optional set of header lines which MAY exist (any additional HTTP V1.1

supported header lines may exist)
• a blank line (i.e. a <CR><LF> by itself)
• the message body consisting of an XML acknowledgement which conforms to

the OSA-EAI Tech-XML schema (e.g. status and query results).

6

Copyright 2003, Machinery Information Management Open Systems Alliance

Required Response Header Lines for POST Method
(Tokens are separated by whitespace)

 Token 1 Token 2 Token 3
HTTP/1.1 response status code that gives the

result of the request, e.g., 200
English reason phrase
describing the status
code, e.g., OK

Date: GMT of the HTTP Tech-Web server in a
fixed-length subset of that defined by
RFC 1123 (an update to RFC 822) in the
form of Day, DD Mon YYYY HH:MM:SS
GMT, e.g.,
Sun, 06 Nov 1994 08:49:37 GMT

Content-Type: text/xml; (Used when the response
status code = 200 for the XML
acknowledgment message body)

OR
text/plain; (Used when the response
status code != 200 for explanatory text
message in message body)

charset=“utf-8”

Content-Length: Exact size of the attached message
body, i.e., 384

The client MUST recognize and support the following core HTTP server response status
codes for the POST method:

Core Response Status Codes for POST Method

 Status Code Status Reason Meaning/Action
100 Continue During the course of an HTTP 1.1 client

sending a request to a server, the server
might respond with an interim "100 Continue"
response. This means the server has received
the first part of the request, and can be used
to aid communication over slow links. In any
case, all HTTP 1.1 clients must handle the
100 response correctly (perhaps by just
ignoring it). Unlike other responses, it is
always followed by another complete, final
response.

No message body.

200 OK Interface is supported by the server.

Message body will contain the XML
acknowledgement information. The client will
still need to check inside the XML
acknowledgement for the “status” element to
see if the request was successful by reviewing
the “success” attribute. If True (1), then the
request was successful. If the “success”
attribute is False (0), then the client should

7

Copyright 2003, Machinery Information Management Open Systems Alliance

refer to the message_code and message_text
for a further description of the problem and
take appropriate action. The V3.0 message
codes & associated text are listed in a table
below.

400 Bad Request Client request has invalid syntax. The client
SHOULD NOT repeat the request without
modifications.

Message body may contain additional text
explanation of error.

404 Not Found The Web server has not found a Tech-Web
server which matches the requested URI.

Message body may contain additional text
explanation of error.

500 Internal Server Error The server encountered an unexpected
condition which prevented it from fulfilling the
request.

Message body may contain additional text
explanation of error.

501 Not Implemented Interface is not supported by the server.

Message body may contain additional text
explanation of error.

505 HTTP Version not supported A version other than 1.1 is being utilized by
the client.

Message body may contain additional text
explanation of error.

If a client receives any 3xx, 4xx, or 5xx response notices, it MUST treat these responses
as if a transport error has occurred.

MIMOSA Tech-Web Acknowledgment Status Element Error Messages

 Message Code Message Text Meaning/Action
0000000000000000-0001 Invalid Connect String MAY be returned only in interface mim_0003

(Schema name: V3-0-0003Connect.xsd)
when a client attempts to connect to a server
with a server-specified connect string.

0000000000000000-0002 Data Source Not
Available

MAY be returned in any interface except
mim_0004 (Schema name: V3-0-
0004Disconnect.xsd). The data source(s) the
server requires are not available. This could
be due to database unavailability, etc.

0000000000000000-0003 Data Limit Exceeded MAY be returned in any interface except
mim_0003 and mim_0004. The resulting
acknowledgement exceeds either the client-
specified maximum which was established
upon connection through mim_0003 interface
through the max_document_size_in_bytes
attribute on entity “param” or exceeds a
server-defined limit. Client could re-try by

8

Copyright 2003, Machinery Information Management Open Systems Alliance

specifying additional filtering.
0000000000000000-0004 No Privilege For

Operation
MAY be returned in any interface except
mim_0003 and mim_0004. The connected
user does not have the rights to perform the
request.

0000000000000000-0005 Language Not Supported MAY be returned only in interface mim_0003
when a client attempts to change the server
default language on returned text in lookup
tables and other related text columns from
“eng-US” through the language_code
attribute on entity “param”.

0000000000000000-0006 Function Not
Implemented

MAY be returned in any interface except
mim_0003 and mim_0004. Though the
interface is recognized by the server, the
client-requested action has not been
implemented.

0000000000000000-0007 Cannot Create Entry -
Primary Key Already
Exists

MAY be returned in any CREATE interface
when the client-requested entry to create in
the server’s system already exists. The
Primary key is the unique set of attributes
(columns) which only one row can contain.

0000000000000000-0008 Cannot Create Entry -
Not All Required Data
Specified

MAY be returned in any CREATE interface
when the client-requested entry to create in
the server’s system has one or more null
attributes which are defined as required
attributes.

0000000000000000-0009 Cannot Create Entry -
Invalid Data Specified

MAY be returned in any CREATE interface
when the client-requested entry to create in
the server’s system has invalid data which
could be attributes with invalid data types.

0000000000000000-0010 Cannot Create Entry -
Exceeded Attachment
Limit

MAY be returned only in interface mim_8031
(Schema name: V3-0-8031-
01CreateWRBlob.xsd) when a client attempts
to create more binary attachments associated
with a work request than a server supports.

0000000000000000-0011 Cannot Create Entry -
Attachment Data Type
Not Supported

MAY be returned only in interface mim_8031
(Schema name: V3-0-8031-
01CreateWRBlob.xsd) when a client attempts
to create a binary attachment associated with
a work request which is not supported by the
server.

0000000000000000-0012 Session ID Not Valid -
Connect Required

MAY be returned in any interface except
mim_0003 (Schema name: V3-0-
0003Connect.xsd). The client has specified in
its “header” element a “session_id” attribute
which is not valid on the server at this time.
This may be due to a timeout condition on the
server, which requires the client to re-connect
before-attempting the request again.

 NOTE: User-defined Tech-Web Acknowledgment Status Element error messages MAY
be sent by the server. The server MUST use a message code which contains a unique 16-
character site code, followed by a dash (“-“) and 4 numeric characters. If a client does

9

Copyright 2003, Machinery Information Management Open Systems Alliance

not recognize these additional status element message codes, it will only be able to log or
display the associated text for human intervention.

Chunked Transfer-Encoding
If a server wants to start sending a response before knowing its total length (like with
long script output), it MAY use the simple chunked transfer-encoding, which breaks the
complete response into smaller chunks and sends them in series. A client MUST support
this type of a response which contains the "Transfer-Encoding: chunked" header.
A chunked message body contains a series of chunks, followed by a line with "0" (zero),
followed by optional footers (just like headers), and a blank line. Each chunk consists of
two parts:

• a line with the size of the chunk data, in hex, possibly followed by a
semicolon and extra parameters you can ignore (none are currently standard),
and ending with <CR><LF>.

• the data itself, followed by <CR><LF>.

Sample HTTP Exchange
Client “connect” request:

POST /mimosaeai HTTP/1.1
Host: www.eaiserver.org:80
Content-Length: 420
Content-Type: text/xml; charset="utf-8"
MIMInterface: mim_0003
MIMSchemaName: V3-0-0003-01Connect.xsd
<?xml version="1.0" encoding="utf-8"?>
<mim_0003>
 <connect_req>
 <param connect_string="username=robert023 password=xfw3041"

language_code="en-US" include_non_active_rows_def="false"
include_all_site0_rows_def="false"
include_row_info_columns_def="false"
include_lc_info_columns_def="false" />

 </connect_req>
</mim_0003>

Server “connect” success response:
HTTP/1.1 200 OK

10

Copyright 2003, Machinery Information Management Open Systems Alliance

Date: Mon,02 Apr 2003 23:32:00 GMT
Content-Length: 529
Content-Type: text/xml; charset="utf-8"
<?xml version="1.0" encoding="utf-8"?>
<mim_0003 xmlns="http://www.mimosa.org/TechXMLV3-0">
 <connect_ack>

<header include_row_info_columns="0"
session_id="session001" include_all_site0_rows="0"
include_non_active_rows="0"
include_lc_info_columns="0"/>

 <server name="Indus International"/>
 <param language_code="en-US"

include_lc_info_columns_def="0"
include_all_site0_rows_def="0" connect_string="Indus
Test Connect" include_non_active_rows_def="0"
include_row_info_columns_def="0"/>

 <status success="1"/>
 <row>
 <db_mim_interface db_site="000003EA00000001"

db_id="1" interf_type_code="9620830"/>
 <db_mim_interface db_site="000003EA00000001"

db_id="1" interf_type_code="9620130"/>
 <site_database db_site="000003EA00000001" db_id="1"

name="Indus InSite EAM Database"/>
 </row>
 </connect_ack>
</mim_0003>

HTTP Proxies
An HTTP proxy is a program that acts as an intermediary between a client and a server. It
receives requests from clients, and forwards those requests to the intended servers. The
responses pass back through it in the same way. Thus, a proxy has functions of both a
client and a server.
Proxies are commonly used in firewalls, for LAN-wide caches, or in other situations.
When a client uses a proxy, it typically sends all requests to that proxy, instead of to the
servers in the URLs. Requests to a proxy differ from normal requests in one way: in the
first line, they MUST use the complete URL of the resource being requested, instead of
just the path. For example,

GET http://www.eaiserver.org/mimosaeai HTTP/1.1

That way, the proxy knows which server to forward the request to (though the proxy
itself may use another proxy).

