Industry Digitalization and the Open Industrial Interoperability Ecosystem (OIIE)

Nov 16, 2017

MIMOSA Open Meeting to Discuss Industry Digitalization and Interoperability

Alan Johnston Convener ISO TC 184/WG 6 (Oil and Gas Interoperability) President MIMOSA Co-Chair Standards Leadership Council

Critical Infrastructure: Key Sectors These Industry Sectors are Highly Interdependent

- Many Industry Sectors are critical parts of each other's supply chains and must <u>Interoperate.</u>
- <u>US Department of</u> <u>Homeland Security has</u> <u>IT Security mission for</u> <u>all parts of US critical</u> infrastructure

Digitalization and Interoperability

 Vision - Interoperable Components, Systems, Systems of Systems and Networks of Networks composed into adaptable, scalable, secure and sustainable Digital Business Ecosystems

Path Forward:

- Simplify
- Standardize
- Digitalize
- Interoperate

Digital Ecosystem

• Wikipedia:

- A <u>digital ecosystem</u> is a distributed, adaptive, open socio-technical system with properties of self-organisation, scalability and sustainability inspired from natural ecosystems.
- Digital ecosystem models are informed by knowledge of natural ecosystems, especially for aspects related to competition and collaboration among diverse entities.
- The term is used in the computer industry, the entertainment industry, and the World Economic Forum.

Major IT/IS firms (Apple, Google, Microsoft, SAP and many others) have all been developing and promoting their own proprietary digital ecosystems for over 10 years.

Ecosystems and Interoperability

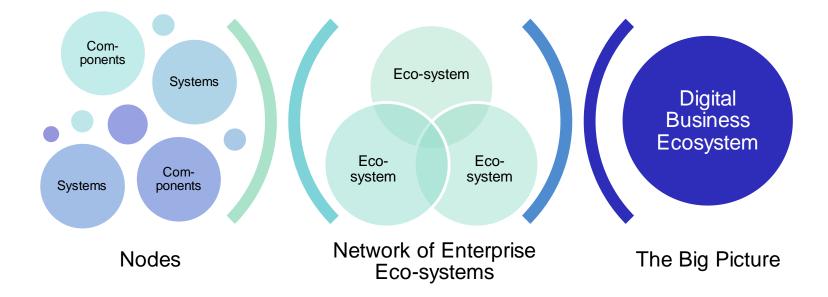
Supplier-specific Interoperability

🗸 Lego

- ✓ Enterprise Resource Planning (ERP)
- ✓ Apple Ecosystem
- Open Source
 - 🗸 Linux
 - Android
- Standards-based Interoperability
 - ✓ Intermodal Transport
 - Internet
 - ✓ Industrial Internet of Things (IIOT)
 - Open Industrial Interoperability Ecosystem (OIIE) Embraces COTS & Open Source

Digital Business Ecosystem-Why?

 Wikipedia: The concept of <u>Digital Business Ecosystem</u> was put forward in 2002 by a group of European researchers and practitioners, including Francesco Nachira, Paolo Dini and Andrea Nicolai, who applied the general notion of digital ecosystems to model the process of adoption and development of ICT-based products and services in competitive, highly fragmented markets like the European one.



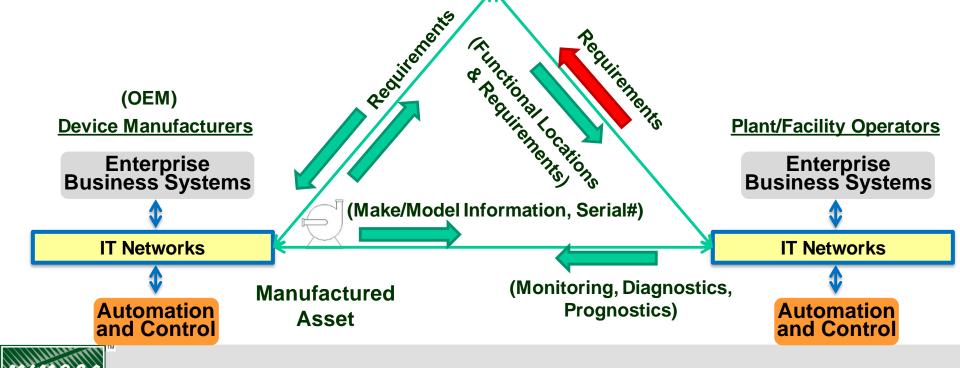
Digital Business Ecosystem-Status

- The challenge is to find pragmatic ways of implementing Digital Business Ecosystems which are supplier neutral and adaptive enough to sustainably span the industrial sectors included in for Critical Infrastructure.
- The OIIE provides such an approach where:
 - OIIE uses a standardized intra and inter-enterprise
 Solutions Architecture
 - OIIE Instances are Cloanable

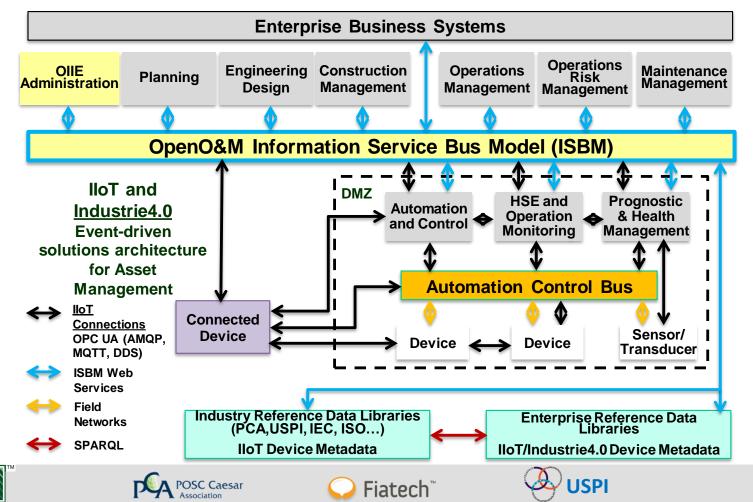
Systems of Systems and Individual Enterprise Ecosystems Must Interoperate In Digital Business Ecosystems

The Open Industrial Interoperability Ecosystem (OIIE) defines the basis for Supplier-Neutral Digital Business Ecosystems composed of Enterprise Ecosystems which share the required standards.

- Supplier-Neutral Systems of Systems & Networks of Networks
- Collections of which can form Digital Business Ecosystems


EPC Firms

Engineering and Construction


IT Networks

OIIE Includes

- Industry 4.0 Workflows
- PERA and SCM with IIOT

OllE Simplified Systems Connectivity and Services Architecture

IMOS

Major Projects in Support of OIIE

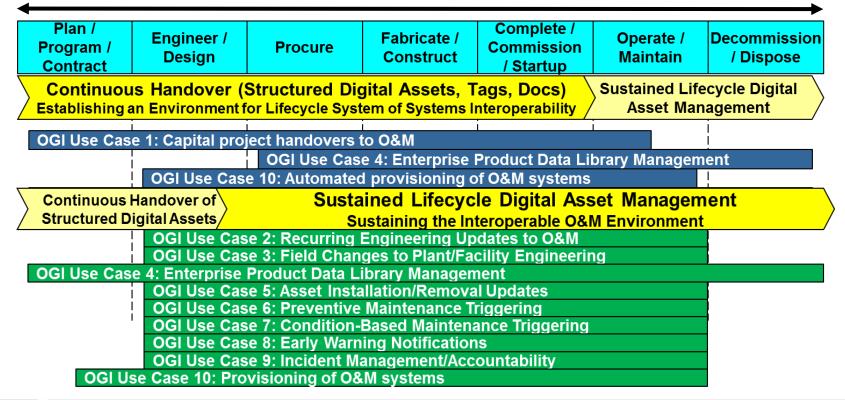
RESTful Services and JSON Update

- Adding JSON Schema
- ✓ OpenO&M ISBM Update for more REST, JSON and Binary
- Associated MIMOSA CCOM Updates
- Industry Standard Datasheet Definitions
- OIIE Oil and Gas Interoperability (OGI) Pilot Program
 - ✓ An Instance using Oil and Gas Assets (Shows how OIIE is cloneable)
 - Provides the industry R&D Testbed for the OIIE
 - ✓ 2017-2018 OIIE OGI Pilot Phase just kicking off
 - ✓ OIIE OGI Pilot with ILAP Just kicked off in cooperation with PCA

OIIE/OGI Standardized Use Case Structure Standardized Methodology to Define and Re-use OIIE Components

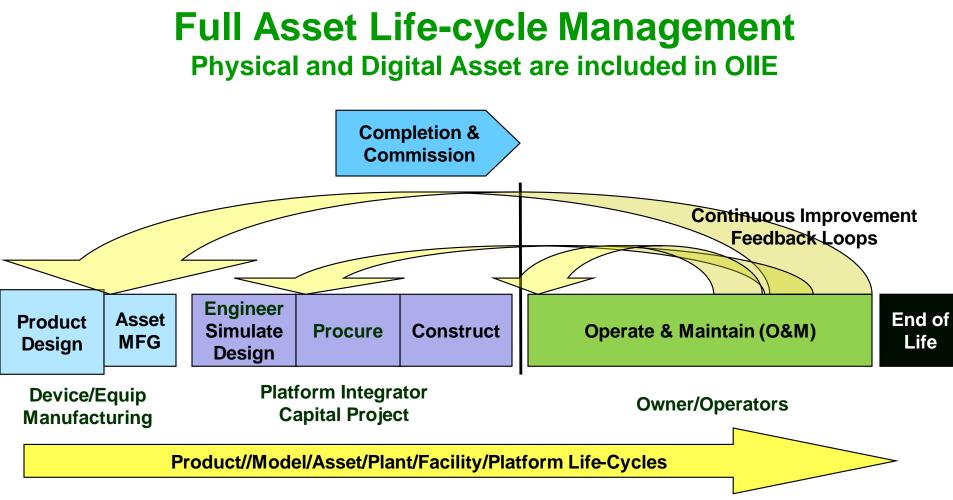
Use Case = 11+4

- Background
- Scope
- Preconditions
- Successful End Condition
- Actors
- Triggers
- Process Workflow
- Scenarios


Scenario (OIIE Event/Micro Service Definition for Adaptors)= 32

- Actors
- Data Content
- Data Formats
- Reference Data
- Information Service Bus Configuration

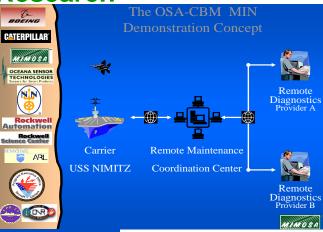
Key OIIE Industry Use Cases Cover the Lifecycle of the Asset



Digitally Enabled Life-cycle Asset Management

- > This is inherently a cross industry topic
 - Most asset classes are manufactured in one industry group, but used in many other industry groups
 - Products leveraging the same core standards can be written once and used in many industries
- This has been the core focus for MIMOSA since the late 1990s
 - SA-CBM Program 1998-2001 Office of Naval Research Funding
 - > The OIIE has evolved out of work in the OGI Pilot, which began in 2009

> The role for standards and cooperation between industry associations

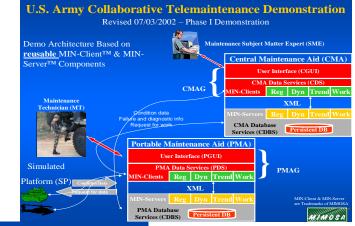


Derived from ISO TC 184 Manufacturing Asset Management Integration Task Force Final Report

OSA-CBM Dual Use Technology Program

Office of Naval Research

MIN-Viewer Segment Navigation 1



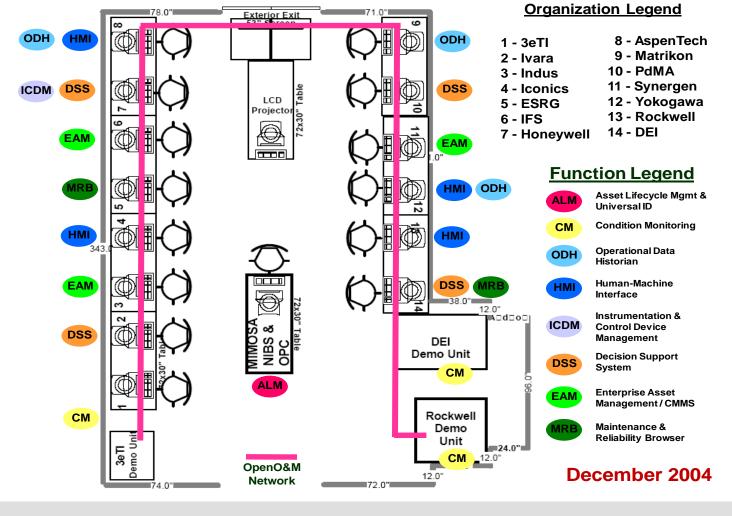
Army Collaborative Telemaintenance

U.S. Army CECOM Collaborative Telemaintenance Project

Phase I Demonstration Briefing – July 31, 2002 Alan Johnston – MIMOSA Kenneth Bever – MIMOSA Bob Walter – Penn State ARL

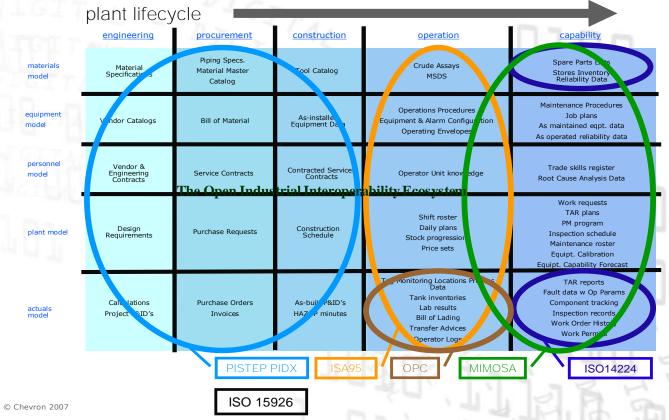
CMA Showing Measurement Events In Alarm

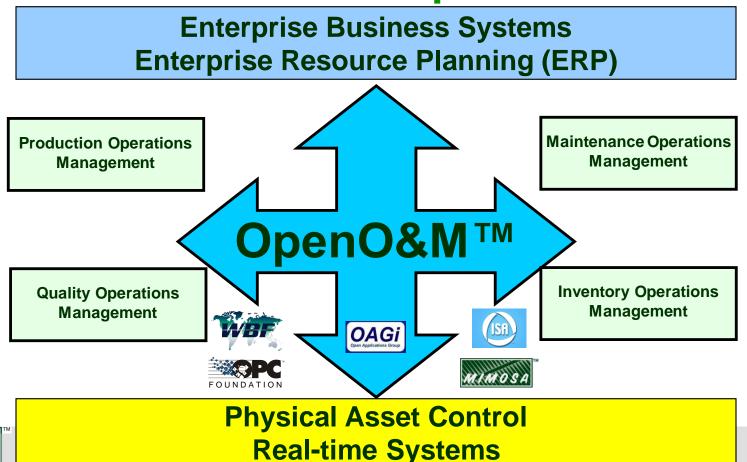
MIMOSA


Up Get data	Create work request Plot			Measurement Location: UserTagident- S03-03 Name- S03			
Home Office	Navigati	on Detail	Is Events				
CH-47 - Tail 05 Drive System	Max Alarm	Type	UTC Time	Value	Eng Unit	Scaling	
F1 Aft Sync	0	Magnitude	2001-11-26T1	0.008400667	Spectrum Amp	RMS	- 1
Chitch Ass		Magnitude	2001-11-2671	0.017452496	Spectrum Amp	RMS	-11
Drive Shaft	0	Magnitude	2001-11-26T1	0.469927663	g's (Acceleratio	RMS	-10
Fund Ximsn		Magnitude	2001-11-26T1	1.036288911	Unitiess	RMS	
Planet Gear		Magnitude	2001-11-26T1	0.884841639	g's (Acceleratio		
Q III Xmsn Assa	0	Magnitude	2001-11-26T1	0.9	Unitless	RMS	- 11
S Xmsn A		Magnitude	2001-11-26T1	1.063	Unitiess	RMS	
🌵 🚺 Gear an		Magnitude	2001-11-26T1	1.013746006	Unitiess	RMS	
- 😐 mea	1	FFT	2002-07-16T1		Hertz (Units Pe		
- 🥺 mea		FFT	2001-11-26T1		Hertz (Units Pe	Peak	_
Gea	• • • • • • • • • • • • • • • • • • •		2001-11-26T1		Hertz (Units Pe	Peak	-
Power Plant	9	FFT	2001-11-26T1		Hertz (Units Pe	Peak	
Rotor System	9		2001-11-26T1		Hertz (Units Pe	Peak	
Air Frame	9	FFT	2001-11-2671		Hertz (Units Pe	Peak	
Flight Controls			2001-11-26T1		Hertz (Units Pe	Peak	
Dodas Mardusti	· •		2001-11-26T1		Hertz (Units Pe	Pesk	
Work requests:							
Work Request ID	Date	P	riority Code	From	1	Type	
100	2002-07-30T16:1	3 7			rd Mai	Maintenance Maintenance, Corre	
201	2002-07-31T11:0	3 0			rd Mai		
302	2002-07-31T11:1		0		rd Mai	faintenance	

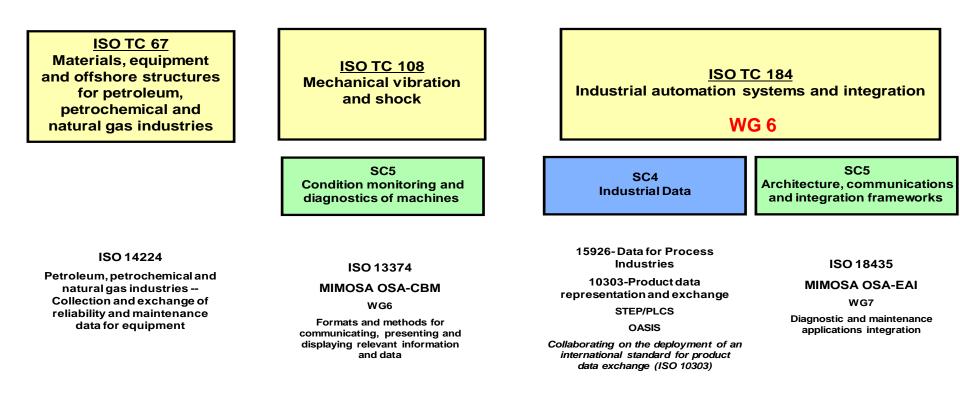
International Maintenance <u>Conference 2004</u>

Applying MIMOSA and other key standards to industrial systems




28

bp data model map


The OpenO&M[™] Solution: Open Standards Fill The Gaps-Formed 2004

Some Relevant ISO Related Activities

Industry Digitalization and OIIE Summary

- Industry Digitalization is an imperative
- Digital Business Ecosystems are the most broadly accepted model for accomplishing digitalization
- The OIIE provides a pragmatic, supplier-neutral approach for implementing Digital Business Ecosystems

OIIE and OGI Pilot Credits

- MIMOSA defines the OIIE using a portfolio of published, supplierneutral specifications and standards, which are used in a consistent, repeatable, scalable and sustainable manner. All rights to included specifications and standards and standards are retained by the organizations which develop, publish and license them, in accordance with their IP Policies.
- MIMOSA owns and operates the Oil and Gas Interoperability (OGI) Pilot testbed as an instance of the OIIE, in accordance with the applicable MIMOSA Policies. The OGI Pilot is used to both validate design elements of the OIIE and for conformance testing for included systems, information and applications software.
- MIMOSA website is located at: www.mimosa.org

